Reduction in total plate count by sanitisers

Log cycle reduction in total plate count

- Water
- Chlorine 50mg/L
- Chlorine 100mg/L
- Citran 5ml/L
- Zydox Chlorine dioxide 2.4mg/L
- Zydox Chlorine dioxide 4.8mg/L
- Tidal Surge (PAA) 80mg/L
- Turcosan 0.25g/L
- Turcosan 0.5g/L
Postharvest Practices to Mitigate Food Safety Risks in Rockmelons

S.P. Singha and Andrew Watsonb

a Central Coast Primary Industries Centre, Gosford
b Yanco Agricultural Institute, Yanco
Presentation Outline

• Background: food safety hazards
• Microbial risks: sources and routes
• Industry practices: a snapshot
• Research on sanitisers
• Conclusions
Background

- Food safety is a continuing challenge
- Horticultural products linked to foodborne illnesses outbreaks
- Feb 2016, 143 cases due to pre-packed leafy veg salad

Types of Food Safety Hazards

- Chemical
- Microbial
- Physical
Microbial food safety risks

Bacteria, parasites, and viruses

- *Listeria monocytogenes*
- *Salmonella species*
- *E.coli (pathogenic strains)*
- *Campylobacter*
- *Cryptosporidium*
- Noroviruses
- *Hepatitis virus*
Microbial food safety risks

Listeria monocytogenes

- bacteria found in soil, water, & animals
- causes listeriosis in older people, pregnant women and immuno-compromised people
- can survive and grow even in cold store
- rockmelons under scanner during the Listeria-outbreak in 2010
Microbial food safety risks

Salmonella species

- live in the intestinal tracts of animals and humans
- causes gastroenteritis
- severe symptoms in children and elderly
- rockmelons linked to a Salmonella-outbreak in 2006
Microbial Food Safety Risks

- Preharvest
- Postharvest
Microbial food safety risks

Pre-harvest contamination

- Proximity to soil, surface netting
- Organic fertilisers (raw manures)
- Contaminated irrigation water (sprinklers)
- Run off from nearby livestock operations
- Livestock and wildlife access to the paddock
Microbial food safety risks

Postharvest contamination
- Dump tank-cross contamination
- Wash water without a sanitiser
- Fungicide tank contaminated with bacteria
- Wet surface on packing line
- Workers hygiene and sanitation
- Packing house equipment and cold storage
ACIAR sub-project objectives

- Assessment of the current food safety practices followed by the melon industry
- Evaluation of new sanitisers and sanitation systems to mitigate food safety risks in melons
- Improve the industry practice
Postharvest practices in a rockmelon packing house

- Harvested from field
- Cold room holding overnight
- Washing with/without sanitiser
- Culling unmarketable fruit
- Fungicide dip/spray
- Grading, Packing, cold room holding
- Transport
Variability in industry practices

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wash water source</td>
<td>Filtered channel water</td>
<td>Town water</td>
<td>Channel water</td>
</tr>
<tr>
<td>Wash water run to waste</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
</tr>
<tr>
<td>Sanitiser used</td>
<td>✓</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>High pressure washing</td>
<td>✓</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Monitoring & recording</td>
<td>✓</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Food safety certification</td>
<td>✓</td>
<td>✓</td>
<td>?</td>
</tr>
</tbody>
</table>
Variability in industry practices

- Washing
 - High pressure (?? psi)
 - Normal pressure (?? psi)
Variability in industry practices

- **Sprayer** (Number and positioning, and flow rate uniformity)
Postharvest washing

- Brushing: Overhead versus flatbed
Variability in industry practices

<table>
<thead>
<tr>
<th>Wash water</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine (ppm)</td>
<td>17.6</td>
<td>0.15</td>
<td>0.0</td>
</tr>
<tr>
<td>ORP (mV)</td>
<td>763</td>
<td>432</td>
<td>349</td>
</tr>
<tr>
<td>pH</td>
<td>7.7</td>
<td>8.7</td>
<td>8.0</td>
</tr>
<tr>
<td>Exposure time (sec)</td>
<td>90</td>
<td>45</td>
<td>45</td>
</tr>
</tbody>
</table>

ORP - Oxidation reduction potential - an indirect measure of the sanitation potential
Variability in industry practices

![Bar chart showing total plate count in CFU/g for Pre-wash, Post-wash, and Post-Fungicide treatments.](chart.png)
Variability in industry practices

Total Plate Count

Pre-wash

Post-wash

Post-Fungicide

10^6 CFU/g

B
Variability in industry practices

Total Plate Count

x10^6 CFU/g

Pre-wash Post-wash Post-Fungicide
Detection of human pathogens on rockmelon fruit

Salmonella spp

Listeria monocytogenes
Do we need to change?

Change is possible if $D \times V \times F > R$

- $D =$ Dissatisfaction with current practice
- $V =$ Vision (what is possible)
- $F =$ First concrete steps towards the vision
- $R =$ Resistance to change

- If $D/V/F = 0$, then $D \times V \times F = 0$
- Resistance to change
Postharvest sanitation

Selection of a sanitiser

- Chlorine (sodium hypochlorite liquid)
- Chlorine (calcium hypochlorite powder)
- Peroxyacetic acid (PAA)
- Bromo-chloro-dimethyl hydantoin (Nylate)
- Chlorine dioxide
- Organic sanitisers
- Ozone
Postharvest sanitation

Selection of a sanitiser

- **Water source** (Town water, Channel water, Dam water etc)
- **Water quality**
 - pH of water
 - organic load
- **Sanitiser application** (manual or automatic dosing)
- **Sanitiser monitoring** (digital meter or paper strips)
- **Packing-line machinery** (corrosiveness)
- **Requirement of the buyer**
- **Economics**
Laboratory trials on postharvest sanitisers

2015 season (2016 ongoing experiments)
- Sodium hypochlorite liquid
- *Calcium hypochlorite powder (Frexus)
- Peroxyacetic acid (Tidal Surge)
- *Bromo-chloro-dimethyl hydantoin (Nylate)
- Chlorine dioxide (Zydox)
- *Chlorine dioxide (Vibrex)
- Organic sanitiser (Citran 1)
- Dichloro isocyanuric acid (Turcosan)

* Included in 2016 trials
Reduction in total plate count by sanitisers

Log cycle reduction in total plate count

- Water
- Chlorine 50mg/L
- Chlorine 100mg/L
- Citran 5ml/L
- Zydox Chlorine dioxide 2.4mg/L
- Zydox Chlorine dioxide 4.8mg/L
- Tidal Surge (PAA) 80mg/L
- Turcosan 0.25g/L
- Turcosan 0.5g/L
Mixing of sanitiser and fungicide?

- Not recommended
- Incompatible tank mix: chlorine and imazalil

<table>
<thead>
<tr>
<th></th>
<th>pH</th>
<th>ORP (mV)</th>
<th>Measured chlorine (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine (100 ppm)</td>
<td>7.2</td>
<td>707</td>
<td>92</td>
</tr>
<tr>
<td>Chlorine (100 ppm) + Imazalil (500 ppm)</td>
<td>8.7</td>
<td>487</td>
<td>43</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>pH</th>
<th>ORP (mV)</th>
<th>Measured chlorine (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine (100 ppm)</td>
<td>7.3</td>
<td>690</td>
<td>60</td>
</tr>
<tr>
<td>Chlorine (100 ppm) + Imazalil (500 ppm)</td>
<td>8.5</td>
<td>480</td>
<td>10</td>
</tr>
</tbody>
</table>
Monitoring, validation and record-keeping of good practices

- Monitoring of processes
 - Wash water quality (pH, ORP, organic load etc.)
 - Sanitiser concentration
 - Sprayers flow rate, positioning
 - Brushes
 - Fungicide concentration
 - Sanitation of packing machinery
 - Cool room hygiene

Validation

Microbiological testing of water, produce and equipment
Manual Digital Monitoring Tools

Must Have!

- pH and ORP meter
- Chlorine meter
- Test strips
 - pH
 - Chlorine
 - Peracetic acid
 - Chlorine dioxide

Disclaimer: No endorsement of products and brands, for information only
Automated Monitoring Tools

Chlorine

Peracetic acid

Ozone

Disclaimer: No endorsement of products and brands, for information only
Conclusions

• Industry practices are variables.

• The lack of a sanitiser (chlorination) and recirculation of contaminated wash water linked to higher microbial load.

• Maintaining and monitoring critical parameters to prevent pathogen survival and cross-contamination.

• Research to explore new sanitation technologies to mitigate food safety risks in rockmelons.
Some food safety facts

• Microbial food safety risks can not be ELIMINATED, but can be MINIMISED.

• Microbial contamination can occur at ANY POINT along the farm-to-fork food chain.

• Contamination is IRREVERSIBLE.

• PREVENTION is better than reliance on corrective actions once contamination has occurred.
Resource: Australian Melon Food Safety Guide

This Guide is designed to assist growers to identify key areas of food safety concern and to suggest improvement in practice and procedure that can easily be implemented on farm. Most growers won’t have to do much beyond current practices; however this Guide might act as a timely reminder of things to be done.

The series of fact sheets focuses on minimizing food safety hazards by providing information that is shown to be effective in reducing, controlling or eliminating microbial contamination in the field and packing shed. Because there are many different types of melons, some practices may be more suitable than others. You should consult your quality assurance service provider for business-specific information.

Compiled by D Fulllove B App Sc (Horticultural Technology) Grad Dip Teach & Helena Whitman Dip Management

The project has been funded by Horticulture Australia Limited using voluntary contributions from the Australian melon industry and matched funds from the Australian Government.

The project leader acknowledges the assistance of Richard Bennett, Fresh Produce Safety Centre Australia & New Zealand; melon growers and industry staff who gave freely of their time to inform the project.

Copyright protects this publication. Except for the purpose permitted by the Copyright Act, reproduction of text or individual images by whatever means is prohibited without prior written permission of Horticulture Australia Limited or the original source.

http://www.melonsaustralia.org.au/other/fact-sheets
No more bad news........

Rockmelons kill 30 in the US
By Janette Woodhouse
Monday, 19 December, 2011

With a final death toll of 30 people, including one miscarriage, the US’s most deadly outbreak ever of food poisoning has been declared over. In total, 148 people across 28 states became ill after eating *Listeria monocytogenes* contaminated whole rockmelon. While the number of deaths was not the largest ever recorded for a food poisoning outbreak, the greater than one in five death rate makes the outbreak of listeriosis the deadliest food poisoning incident in the US. The outbreak was also the first

Qld rockmelons linked to salmonella outbreak
Posted 26 Oct 2006, 12:15am

Health authorities are investigating a possible link between a salmonella outbreak in Australia’s eastern states and rockmelons from north Queensland.

There has been a dramatic surge in salmonella food poisoning around the country, with about 100 confirmed cases in the past month.

New South Wales has been hardest hit with 50 cases and four confirmed cases in the ACT.
Acknowledgements

- Melon Growers and Packers, Riverina, NSW
- Stela Gkountina, Technical support, NSW DPI
- Lee Duffy, E.E. Muir & Sons
- Chris Smith, Lonza Water Treatment (Frexus)
- Sean Parsons, Easy Clean Chemicals (Tidal Surge)
- Kevin Lew, Henkel Australia Pty Ltd (Turcosan)
- Organic Farming Systems (Citran 1)
- Lionel Freedman (Zydox Chlorine dioxide)
- Sarah Bliss, Wobelea Pty Ltd. (Nylate)
Thanks!

E: sp.singh@dpi.nsw.gov.au; T: 02 4348 1935